Blue Pelican

Calculator Appendices

Version 1.01

Copyright © 2009 by Charles E. Cook; Refugio, Tx
(All rights reserved)

Graphing Calculator Appendices

Appendix A: Special marking of graphed functions (video time $=3: 27$)
Comparing lines (2-02)
Comparing parabolas (8-04, 8-06)
Appendix B: Graphing vertical lines (3-03) (video time $=4: 45$)
Appendix C: Finding intersection points (2-06) (video time $=3: 31$)
Appendix D: Graphical solutions to absolute value problems (1-06) (video time $=$ 4:02)

Appendix E: Graphing inequalities in two variables (3-03) (video time $=3: 17$)
Appendix F: Restricting the domain of functions (7-02) (video time $=5: 40$)
Appendix G: Even and odd functions (7-04) (video time $=3.02$)
Appendix H: Inverse functions (9-04) (video time $=4: 38$)
Appendix I: Finding roots (8-06) (video time $=3: 45$)
Appendix J: Finding maximum and minimum points (8-06) (video time $=3: 22$)
Appendix K: Calculations with the natural number e(10-02) (videotime $=3: 53$)
Appendix L: Logarithms (video time $=4: 11$)
Common and natural logs (11-05)
Change of base (11-05)
Appendix M: Scatter plots (13-01, 02; 15-06) (video time $=3: 16$)
Appendix N : Regression (13-01, 02) (video time $=6: 27$)
Appendix 0 : Factorials, permutations, and combinations (15-01, 02, 03)
(video time $=4: 40$)
Appendix P: Statistics (15-07)
Appendix Q: Matrix fundamentals (elementary matrix math) (18-01)
Appendix R: Advanced matrix math: mult, inverse, determinant (18-02, 03, 04)

Calculator Appendix A

(Special marking of graphed functions)

Multiple functions can be simultaneously graphed by pressing the $\mathbf{Y}=$ button. Enter the first function beside $\mathbf{Y 1}=$ and others beside $\mathbf{Y} \mathbf{2}=$, etc.

For the sake of illustration, the functions $y=x$ and $y=3 x+4$ are shown here.

After entering the functions, graph them by pressing the GRAPH button.

The two graphed functions will appear as shown here. (If not, press ZOOM | 6:
ZStandard ... the zoom button is the middle button in the picture above.)

Although it is easy to tell which graph belongs to which function in this particular example, sometimes it is not this easy. This is especially true when there are several functions intertwined or when deep zooms allow only tiny portions to be viewed.

In the present example we will show how to specially mark one of the functions so there will be no doubt concerning its identity on the graph screen.

We will mark the steeper of the two lines $(\mathbf{Y} 2=3 x+4)$ by moving with the UP and/or DOWN ARROWS until the cursor is on the Y2 function.

At this point we want to move the cursor to the left of Y2. Do this by pressing the LEFT ARROW twice. Press ENTER and the icon to the left of $\mathbf{Y} 2$ will turn into a heavy mark. (Repeated pressing of ENTER will toggle through other options.)

Now press the GRAPH button and the Y2 function will be observed to be displayed with a heavier graph so as to associate it with the proper function.

Calculator Appendix B

(Graphing vertical lines)

Generally it is not possible to graph a perfectly vertical line on a TI 84 graphing calculator and have it behave as an ordinary function in the sense that it is possible to find its intersection with other functions.

However, it is possible to create a line so steep that when viewed at a particular zoom level, it essentially looks and behaves as a vertical line.

As an example, let's suppose we need the vertical line $x=5$. This cannot directly be entered using the $\mathbf{Y}=$ button because that particular screen designates functions with $\mathbf{Y} \mathbf{1}, \mathbf{Y} \mathbf{2}$, etc. (n not $\mathbf{X 1}, \mathbf{X} \mathbf{2}$, etc.)

For the particular zoom area you intend to use, pick a y value that is approximately in the middle of the zoom box (let's call it $y_{\text {mid }}$). Use the point-slope form for a line and with the point ($5, \mathrm{y}_{\text {mid }}$) and a very large, negative slope of $m=999999999999$. Thus, the point-slope equation of this line becomes:

$$
\begin{aligned}
& Y_{1}-Y_{\text {mid }}=-999999999999(x-5) \\
& Y_{1}=-999999999999(x-5)+y_{\text {mid }}
\end{aligned}
$$

Most zooms are such that the x-axis is visible in the zoom area, so a safe value of $y_{\text {mid }}$ to use is 0 . In that case our equation would become:

$$
\begin{aligned}
& Y 1=-999999999999(x-5)+0 \\
& Y 1=-999999999999(x-5)
\end{aligned}
$$

For a zoom given by ZOOM | 6: ZStandard the display would appear as shown here.

Essentially the same result can be achieved with a positive slope of m= 999999999999; however, the negative slope must be used to obtain proper left/right shading when graphing the inequalities $x<5$ or $x>5$.

Notice the greater-than $\sqrt{\text { and }}$ and less-than icons just to the left of $\mathbf{Y} 1$. These are set by moving the cursor to the left of Y1 with the LEFT ARROW key. Toggle through the various option by pressing ENTER.

Calculator Appendix C

(Finding intersection points)

Consider finding the intersection point of two functions ($y=3 x+4$ and $y=-2 x-9)$. With $Y=$, enter the two functions and press GRAPH.

To initiate the process of finding the intersection, press $\mathbf{2}^{\text {nd }} \mid$ CALC. From the resulting menu choose 5 : intersect by pressing the DOWN ARROW button thus moving the cursor all the way down to 5: and then pressing ENTER, or by pressing the 5 button.

The next screen will show the graph along with a question, "First curve?". It is asking for either one of the curves. A blinker will be positioned on one of the "curves" (actually a line in this example) that is coincidentally also on the y-axis in this example.

The blinker can be moved along the present curve with the LEFT/RIGHT ARROWS (The UP/DOWN ARROWS jumps between curves). When satisfied that the blinker is distinctly on one of the curves, press ENTER.

At this point another question will appear asking for the second curve. Again, move the blinker with the LEFT/RIGHT ARROWS until satisfied that the blinker is distinctly on the other curve. Press ENTER.

Finally, a third question is presented asking for a, "Guess?" Using the LEFT/RIGHT ARROWS, position the blinker approximately over the intersection point and press ENTER.

Students often ask why a guess is necessary. It's because the curves are often more complicated than our simple example and intersect in more than one point. The calculator needs to know which point we want, so the software inside the calculator insists on a "guess" in all cases.

The coordinates of the point of intersection are now shown at the bottom of the graph screen.

For simple cases like that depeicted here in which there is only one intersection
 point, it is possible to get the answer with three quick ENTERS's after choosing 5: intersect. (No need to adjust positions with the LEFT/RIGHT ARROWS.)

Calculator Appendix D
 (Graphical solutions to absolute value problems)

Consider the solution to the problem $|x-4|=5$. To solve this on a graphing calculator press $\mathbf{Y}=$ and enter:

$$
\begin{aligned}
& \mathrm{Y} 1=\mathrm{abs}(\mathrm{x}-4) \\
& \mathrm{Y} 2=5
\end{aligned}
$$

Access the absolute value function (given by abs above) with:
Math | Num | 1: abs(

The x-coordinates of the two intersection points of these two functions are the solutions to this problem. (See Appendix C for how to find intersection points.)

From the graph below, we see that the solutions are $x=-1$ and $x=9$.

Now consider the same absolute value quantity, but this time as an inequality:

$$
|x-4| \leq 5
$$

The "heavy" part of the graph above is the area in which the Y1 function is less than (below) the $\mathbf{Y} \mathbf{2}$ function. The x values that correspond to this constitute the solution:

$-1 \leq x \leq 9$ which is equivalent to $x \geq-1$ and $x \leq 9$

Finally, consider the inequality:

$$
|x-4| \geq 5
$$

The "heavy" part of the graph above is the area in which the Y1 function is less than (above) the $\mathbf{Y} \mathbf{2}$ function. The x values that correspond to this constitute the solution:

$$
x \leq-1 \text { or } x \geq 9
$$

Calculator Appendix E (Graphing inequalities in two variables)

Consider the display of the following inequality on a graphing calculator.

$$
x+2 y \geq 3
$$

The first step is to solve for y :

$$
y \geq(-x+3) / 2
$$

Press the $\mathbf{Y}=$ button on the calculator and enter $(-x+3) / 2$ for $\mathbf{Y} \mathbf{1}$. Press GRAPH and observe that a line is graphed:

In order to turn this into a true inequality with a shaded region, use the LEFT ARROW to move the cursor to the left of $\mathbf{Y}_{\mathbf{1}}=$. Once the cursor is in that position, repeatedly press ENTER until this icon () appears. This causes the function (in this case a line) to be shaded above. Press GRAPH again and shading will be observed above the line.

To graph the inequality $\mathrm{y} \leq(-\mathrm{x}+3) / 2$ which will require shading below the line, use the LEFT ARROW to move the cursor to the left of Y1 =. Once the cursor is in that position, repeatedly press ENTER until this icon ($\mathbf{*}$) appears. Press GRAPH and shading will be observed below the line.

Similarly, the icons and will result in any function (not just lines) being shaded respectively above or below the graph.

Think of it this way:

$$
\begin{aligned}
& \text { With } \sqrt{v}, Y 1=\ldots \text { effectively becomes } Y 1 \geq \ldots \text {, and } \\
& \text { With } \&, Y 1=\ldots \text { effectively becomes } Y 1 \leq \ldots
\end{aligned}
$$

Calculator Appendix F (Restricting the domain of a function)

It is possible to restrict the domain of a graphed function on a graphing calculator so as to make only a portion of the graph visible.

We will consider the function $f(x)=-.2 x^{2}+7$. Press $Y=$, enter the function as Y1, and then press GRAPH.

To restrict the domain to $\mathbf{x}>\mathbf{5}$, append $/(x>5)$ to the end of the function specified by $\mathbf{Y 1}$. Be sure to enclose the function in parenthesis.

The greater than symbol (>) given in Y1 above is accessed with $\mathbf{2}^{\text {nd }} \mid$ MATH(Test) | 3: > as shown here.

Consider restricting the same function to the domain $-7<x<5$ by appending $/(x>-7$ and $\mathbf{x}<5)$ to the end of the function specified by $\mathbf{Y 1}$.

The logic specifier and given in Y 1 above is accessed with $\mathbf{2}^{\text {nd }}$ | MATH(Test) | Logic | 1: and as shown

Consider restricting the same function to the domain $x<-7$ or $x>5$ by appending /($x<-7$ or $x>5$) to the end of the function specified by Y 1 .

The logic specifier or given in Y 1 above is accessed with $\mathbf{2}^{\text {nd }}$ | MATH(Test) | Logic | 2: or.

Calculator Appendix G

（Even and odd functions）

Consider the test to determine if a function is even： $\mathbf{f}(\mathbf{x})=\mathbf{f}(-\mathbf{x})$
This means if we graph $f(x)$ it should be identical to $f(-x)$ ．

A classical example of an even function is a parabola，for example， $f(x)=x^{2}+3$ ．If we graph $f(-x)=(-x)^{2}+3$ ，it should fall directly on top of $f(x)$ ．For confirmation of this，enter both functions with $Y=$ on a graphing calculator．The results are shown below：

WIFLOW
Kmir＝－10
人max＝10
KSclo 1
以in＝－10
$\mathrm{m} \cdot \mathrm{x}=10$
$\mathrm{YSCl}=1$
Kres＝1

Consider the test to determine if a function is even： $\mathbf{f}(\mathbf{x})=-\mathbf{f}(-\mathbf{x})$
This means if we graph $f(x)$ it should be identical to $-f(-x)$ ．

A classical example of an even function is a cubic function，for example， $f(x)=.2 x^{3}$ ．If we graph $f(-x)=-\left(.2(-x)^{3}\right)$ ，it should fall directly on top of $f(x)$ ．For confirmation of this，enter both functions with $Y=$ on a graphing calculator．The results are shown below：

Calculator Appendix H
 (Inverse functions)

The functions $f(x)=3 x+4$ and $g(x)=(x-4) / 3$ are inverse functions of each other. This is confirmed when the two functions are simultaneously graphed. They are reflections of each other across a 45° line $(y=x)$. All three are graphed below after entering the functions with $Y=$:

The above test for reflection across the line $\mathrm{y}=\mathrm{x}$ is a graphical test. It would seem that on a graphing calculator that it would not be possible to do the algebraic test of $f(g(x))=x$; however, it is possible if we enter

$$
\mathrm{Y} 1=3((\mathrm{x}-4) / 3)+4 \text { which is } \mathrm{f}(\mathrm{~g}(\mathrm{x}))
$$

If this graphs as a line through the origin with a slope of 1 , then it is the line given by $\mathrm{y}=\mathrm{x}$. This is, in fact, the case as shown below, proving that they are inverses. (Actually, it would also be necessary to show that $g(f(x))$ also yields the line $y=x$.)

	$\left.V_{1-3}{ }^{\text {Fote }}(x-4) \text { Flot } 3\right)+4$
	Y ${ }_{2}=$
	V3=
	V4=
	V5=
	$\times{ }^{6}=$

Calculator Appendix I

(Finding roots)

The root of a function is simply the x value of where it crosses the x axis. It is possible for a function to have several roots.

Other names for root are zero and \mathbf{x}-intercept. On a graphing calculator it is called a zero to emphasize that the value of the function is $\mathrm{y}=0$.

Consider the function $y=3 x^{2}-4 x-6$. Finding the roots of this function is equivalent to solving the equation $3 x^{2}-4 x-6=0$.

Begin by pressing the $\mathbf{Y}=$ button and entering the function as \mathbf{Y} 1. Then press GRAPH.

Clearly, from the graph there are two roots. We will concentrate on the left root.

To initiate the process of finding a root, press $\mathbf{2}^{\text {nd }} \mid$ CALC. From the resulting menu choose $\mathbf{2}$: zero by pressing the DOWN ARROW button thus moving the cursor down to 2: and then pressing ENTER, or by just pressing the $\mathbf{2}$ button.

The next screen will show the graph along with a question, "Left Bound?". Move the blinker with the LEFT/RIGHT ARROWS until it is clearly to the left of the desired root (in this case, the left root). Press ENTER when satisfied with the position.

At this point another question will appear asking for the "Right Bound?". Move the blinker with the LEFT/RIGHT ARROWS until it is clearly to the right of the desired root. Press ENTER.

Finally, a third question is presented asking for a , "Guess?" Using the LEFT/RIGHT ARROWS, position the blinker approximately over the root and press ENTER.

At this point the answer is presented at the bottom of the screen.

The other root is found in a similar fashion.

Calculator Appendix J

(Finding maximum and minimum points)

A maximum point of a function is a local point which has a greater value than all other points in its neighborhood. A function can have several maximums. A minimum point is similarly defined.

Consider the function $y=-x^{2}-12 x-30$. Our task is to find its single maximum. Obviously it's an "upside down" parabola and has a maximum point at the vertex of the parabola. Begin by pressing the $\mathbf{Y}=$ button and entering the function as Y1. Then press GRAPH.

$V_{1}-x^{\text {plote }}-12 \times-30$
$v_{2}=$
$\times{ }_{4}=$
Ys=
$\times{ }^{6}=$

To initiate the process of finding the maximum point, press $2^{\text {nd }} \mid$ CALC. From the resulting menu choose 4: maximum by pressing the DOWN ARROW button thus moving the cursor down to 4 : and then pressing ENTER, or by just pressing the $\mathbf{4}$ button.

The instructions below will require moving the blinker with the LEFT/RIGHT ARROWS. Sometimes the blinker is not visible and it's not clear which way to move. Use the coordinates of the blinker at the bottom of the graph screen along with the zoom box coordinates to decide.

The next screen will show the graph along with a question, "Left Bound?". Move the blinker with the LEFT/RIGHT ARROWS until it is clearly to the left of the desired maximum point Press ENTER when satisfied with the position.

At this point another question will appear asking for the "Right Bound?". Move the blinker with the LEFT/RIGHT ARROWS until it is clearly to the right of the desired maximum point. Press ENTER.

Finally, a third question is presented asking for a, "Guess?" Using the LEFT/RIGHT ARROWS, position the blinker approximately over the maximum point and press ENTER.

The coordinates of the maximum point are now presented at the bottom of the screen.

Minimum points are found in a similar fashion.

Calculator Appendix K
 (Calculations with the natural number e)

Just as π is a natural number, so is e. The value of e, an irrational number, is approximately $2.718 . .$.

Typically, what we do with e is raise it to a power. Access this with $\mathbf{2}^{\text {nd }}$ |LN. This places \mathbf{e}^{\wedge} (on the screen which means e raised to the power in the parenthesis. Enter the argument, close the parenthesis, and press ENTER for the result.

To see e to 9 decimals places, enter simply 1 as the argument. This gives e^{1} which, of course, is just e. Also shown here is an evaluation of $\mathrm{e}^{4.6603}$.

The reason e is associated with the LN button is that, that button gives the logarithm, base e. See Appendix L for a discussion of calculations of logarithms.

Press $Y=$ and enter $\ln (x)$ for $Y 1$. The graph of $y=\ln (x)$ is shown below. Notice that the curve asymptotically approaches the y-axis and has a root of 1.

Press $\mathbf{Y}=$ and enter e^{x} for Y 1 . The graph of $\mathrm{y}=\mathrm{e}^{\mathrm{x}}$ is shown below. Notice that the curve asymptotically approaches the \mathbf{x}-axis and has a y-intercept of 1.

Calculator Appendix L

(Logarithms)

Two different choices are available when computing logarithms; base 10 , and base e :

- Base 10 (common logarithms, use the LOG button)
- Base e (natural logarithms, use the $\mathbf{L N}$ button)

Calculate the common log of 100 . This can be written as $\log _{10} 100$ but is normally written as $\log 100$. (When the base is omitted it's understood to be 10.)

The answer is 2 since this is the power to which 10 should be raised in order to equal 100. Shown here is how this problem is entered into the calculator. Notice that after pressing the LOG button, \log (is displayed on the screen. Finish by entering 100 and a closing parenthesis. Press ENTER to get the answer (It's not necessary to close the parenthesis before pressing ENTER, but is highly recommended.)

Similarly, calculate the natural log of 128.307 . This can be written as $\log _{\mathrm{e}} 128.307$ but is normally written as $\ln 128.307$ or $\ln (128.307)$.

This problem is asking the question, "To what power must e be raised in order to get 128.307. (e is the irrational, natural number 2.718...)

Press the $\mathbf{L N}$ button which results in the display $\ln ($. Finish entering the argument, 128.307, and press ENTER. The displayed results are shown here.

There are occasions in which a logarithm to a different base must be found. Consider the problem $\log _{13}(153.6692)$. Use the change-of-base formula as follows:

$$
\begin{aligned}
& \log _{13}(153.6692)=\frac{\log (153.6692)}{\log (13)}, \text { or } \\
& \log _{13}(153.6692)=\frac{\ln (153.6692)}{\ln (13)}
\end{aligned}
$$

According to the formulas above, a logarithm with any base can be expressed in terms of either common or natural logs.

For common logs the display on the calculator would be as follows:

Calculator Appendix M

(Scatter Plots)

Consider the data in this table. These points can be displayed as a "scatter-plot" with the steps described below.

The first step is to press the STAT button which yields the following

\mathbf{x}	\mathbf{y}
-9	-2.1
-5.2	-1
-2	2.04
2.3	5
6	6.11
8.9	8.2

At this point either press ENTER or $\mathbf{1}$ indicating we wish to choose menu item 1 (editing/ entering the list of x and y values).

Enter the x and y values choosing each position with the Left/Right \& UP/DOWN ARROWS.
Enter the x values under list L1 and the y values under list L2.

If L1 and L2 are not visible use the LEFT/RIGHT ARROWS so they display. If old lists are present us the UP ARROW to position the cursor on top
 of, for example L1, press CLEAR, and press ENTER.

The next step will be to press $\mathbf{2}^{\text {nd }} \mid$ STAT PLOT | $\mathbf{1} \mid$ On so as to enable a scatter-plot to be displayed. This sequence is shown below. In the picture on the far right, use the LEFT/RIGHT ARROWS to choose between On and Off (choose On).

Finally, display the scatter plot by pressing the GRAPH button.

See Appendix N for how to produce the equation of a line that "best fits" this scatter-plot.

Calculator Appendix \mathbf{N}

(Regression)

The process of regression is finding a function that "best-fits" a scatterplot. In this Appendix a linear regression that determines the best-fit of a line will be demonstrated. Shown below is the data and the resulting scatter-plot from Appendix M that will be used here. That Appendix shows how to enter the data and produce the scatter-plot.

With the above data already in the lists $\mathbf{L 1}$ (the x values) and L2 (the y values), press the STAT button. With the RIGHT ARROW move to CALC and then with the DOWN ARROW down to 4: LineReg(ax+b).

Press ENTER twice to produce the a and b values defining the best-fit line:

At this point we could press $\mathbf{Y}=$ and enter:

$$
Y 1=.5943811682 X+2.942603139
$$

However, there is an easier way. Rather than having to manually enter the a and b values for $\mathbf{Y} \mathbf{1}$, it is possible to automatically have them entered.

With the cursor on $\mathbf{Y 1 =}$ (on the $\mathbf{Y}=$ screen), press the VARS button, choose 5: Statistics, RIGHT ARROW across to EQ, and then down to
1: RegEQ. At this point the regression equation for the best-fit is automatically entered for Y 1 .

Press GRAPH and if STAT PLOT is still enabled (see Appendix M), the following should display as the best-fit for for the scatter-plot.

Some data does not lend itself to being best-fit with a line. For data that obviously "curves", other type regressions are available (parabolic (QuadReg), cubic, exponential, etc.)

When doing various regressions on a set of data points, it is possible to get "scores" on the quality of each fit.

2No

First, it will be necessary to turn on "diagnostics" so that a score can be displayed. Press $\mathbf{2}^{\text {ND }}$ |
CATALOG, Down ARROW down to 1: Diagnostics ON, and press ENTER twice to turn on diagnostics.

With diagnostics on, a regression will now display $r^{2}=$ "some number less than or equal to one". Shown here is the same linear regression as above except now $\mathrm{r}^{2}=$.9816060431 is displayed along with a corresponding r value. r^{2} is the square of the correlation factor, r, which can range from -1 to 1 .

To eliminate the sometimes confusing negative r values, r^{2} is often given as a figure of merit, were of, of course, $r^{2}=1$ is a perfect score as a result of a perfect fit.

For a linear regression, a negative r value indicates that the line of best-fit has a negative slope and the correlation is said to be negative. Likewise, a best-fit line with a positive slope is represented with a positive value of r and the correlation is side to be positive.

Calculator Appendix 0
 (Factorials, permutations, and combinations)

The factorial function is accessed via the Math button. For example, "four factorial" (written as 4!) evaluates as follows:

$$
4!=4(3)(2)(1)=24
$$

Use the following sequence to evaluate, for example, 21!:

Enter 21, press the Math button, RIGHT ARROW across to PRB, DOWN ARROW to 4: !, and press ENTER.

At this point you should have " 21 !" on the screen. Press ENTER one more time to evaluate this factorial:

The permutations function is also accessed via the Math button. For example, $n P r$ is read, "the number of permutations of n things taken r at a time". The formal definition is:

$$
\mathrm{nPr}=\frac{n!}{(n-r)!}
$$

Use the following sequence to evaluate, for example, 14 P 5 :

Enter 14, press the Math button, RIGHT ARROW across to PRB, DOWN ARROW to 2: nPr, and press ENTER.

At this point you should have " 14 nPr " on the screen. Enter 5 and the screen should now read " 14 nPr 5 ". Press ENTER one more time to evaluate the number of permutations:

14 nPr 5	240246

The combinations function is also accessed via the Math button. For example, $n \mathrm{C}_{r}$ is read, "the number of combinations of n things taken r at a time". The formal definition is:

$$
{ }_{\mathrm{n}} \mathrm{Cr}=\frac{n!}{(n-r)!r!}
$$

Use the following sequence to evaluate, for example, 56C45 :

Enter 14, press the Math button, RIGHT ARROW across to PRB, DOWN ARROW to 3: $\mathbf{n C r}$, and press ENTER.

At this point you should have " 56 nCr " on the screen. Enter 45 and the screen should now read " 56 nPr 45 ". Press ENTER one more time to evaluate the number of combinations:

Calculator Appendix P

(Statistics)

Consider the following set of test grades:
$\{92,99,85,95,79,64,79,91,56,82,81\}$

These numbers can be entered and the following statistics easily produced:
mean, median, standard deviation, lower-quartile, upper-quartile, $\min , \max , .$. and more.

Press the STAT जax button and then select EDIT by pressing ENTER.	

Under L1, enter the first number in the list, press the DOWN ARROW, and then enter the next number. Continue until all numbers are entered.(If L1 is not initially empty, UP ARROW on top of L1, press CLEAR and then ENTER.)

Now that the data is entered we are ready to display statistical facts about the data:

Press the STAT অит button, RIGHT ARROW over to CALC.

The statistics for the data in the $\mathbf{L 1}$ list displays. Use the DOWN-ARROW
to move down the display to view the remaining statistics.

$1-\mathrm{War}$ Stats
$r=11$
Min $4=56$
$\mathrm{Q}_{1}=79$ lower quartile
Med=82 median
Qs $=92$ upper quartile
Max $\times 1=99$

The following definitions apply to the some of the displayed statistics:

The mean (\bar{x}) is the average:

The median is the number in the middle of the ordered list:
(If there are two numbers in the middle, average them.)
The lower quartile is the median of the lower half of the numbers:

The upper quartile is the median of the upper half of the numbers:
(When there are an odd number of data points, the middle value is not used when finding either quartile.)

The standard deviation (σ) is a measure of the average "scatter" of the data.

Calculator Appendix Q

Matrix Fundamentals

(elementary matrix math)
Consider the following matrix problem:

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] & B=\left[\begin{array}{ll}
5 & 6 \\
7 & 8
\end{array}\right] \\
2 \mathrm{~A}-3(\mathrm{~B}-\mathrm{C})
\end{array}
$$

The first step is to enter the matrices A, B, and C. Begin by pressing $\mathbf{2}^{\text {ND }}$ | MATRIX resulting in this display. RIGHT ARROW twice across to EDIT.

Press ENTER and this screen appears. Use the UP/DOWN ARROWS to select the matrix we wish to edit (in this case A). Press ENTER.

This screen will appear asking for the dimensions of the A matrix in the upper right corner. Enter the number of rows first. Then press ENTER. Enter the number of columns and then ENTER.

Enter each element of the A matrix pressing ENTER after each is entered. This display shows the next to last element (3) being entered.
$2,1=3$

Similarly, enter matrix B with the key sequence 2ND \| MATRIX | EDIT | 2:[B] | ENTER. In the same fashion, enter matrix C.

We are ready now to evaluate the matrix problem $2 A-3(B-C)$. Begin by entering 2. Place an A beside it using 2ND | MATRIX | Names \| 1: [A] ENTER.

At this point we have 2A on the screen. Next, enter -3(and the display should read 2A-3(.

B is entered with 2ND | MATRIX | Names | 2: [B] | ENTER as shown here.

Finally, enter - [C]) and press ENTER.

The final matrix answer is displayed.

Calculator Appendix \mathbf{R}
 Advanced Matrix Math:
 Multiplication, Inverse, Determinant

Matrices A and B can be multiplied in the order, $A B$, only if the number of columns in A is equal to the number of rows in B.

As an example, let $A=\left[\begin{array}{llll}1 & 3 & 2 & -1 \\ 2 & 1 & 0 & -2\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 4 & 1 \\ 3 & 1 & 2 \\ 1 & 1 & 3\end{array}\right]$
As described in Calculator Appendix \mathbf{Q}, enter the A and B matrices.

Using $2^{\text {nd }}$ MATRIX, select the A matrix and then press ENTER.

The resulting main screen display is shown here.

We want to multiply this by the B matrix, so enter a times sign.

Using $2^{\text {nd }}$ MATRIX | DOWN ARROW, select the B matrix and press ENTER.

[A]*[B]

The main display will now look like this.

Press ENTER to obtain the final answer matrix.

To find the inverse of, for example, matrix $C=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$, first enter matrix C as described in Calculator Appendix \mathbf{Q}.

Use $\mathbf{2}^{\text {nd }}$ MATRIX and the DOWN ARROW to select matrix C.

[C]

Press ENTER and obtain this display.

The inverse of C is represented symbolically by raising C to the -1 power.

Press the \mathbf{X}^{-1} key and then ENTER to obtain the final answer, a matrix that is the inverse of C.

To find the determinant of, for example, matrix $C=\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$, first enter matrix C as described in Calculator Appendix \mathbf{Q}.

Use $\mathbf{2}^{\text {nd }}$ MATRIX | MATH | 1: det (| ENTER

 to prepare to take the determinate of a matrix.

det!

The main screen now displays this:
At this point we need to put the matrix C in the parenthesis.

Using $\mathbf{2}^{\text {nd }}$ MATRIX | DOWN ARROW, select the C matrix and then press ENTER.

Close the parenthesis and press ENTER to produce the answer.

