Blue Pelican

Calculus Enrichment Topics

Teacher Version 1.01

Copyright © 2011 by Charles E. Cook; Refugio, Tx
(All rights reserved)

Table of contents - Enrichment Topics

Topic A: Special sine and cosine limits
Topic B: Formal definition of continuity
Topic C: Verification of the power rule
Topic D: Verification of the product and quotient rules
Topic E: Derivative of sine and cosine
Topic F: Verification of the chain rule
Topic G: Verification of exponential derivatives
Topic H: Verification of logarithm derivatives
Topic I: Verification of inverse trig function derivatives
Topic J: An argument in support of the Fundamental Theorem of Calculus Topic K: Why the absolute value for the integral of $1 / x$?

Topic L: Partial fractions

Enrichment Topic A

(Special sine and cosine limits)

Demonstrate that the following limit is true:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1
$$

Begin with the infinite series expansion definition for $\sin \left(x_{r a d}\right)$:

$$
\sin \left(x_{r a d}\right)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

For very small $x, \boldsymbol{\operatorname { s i n }}(\mathbf{x}) \approx \mathbf{x}$.

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{x}{x}=1
$$

Demonstrate that the following limit is true:

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x}=0
$$

Begin with the infinite series expansion definition for $\cos \left(x_{r a d}\right)$:

$$
\cos \left(x_{\mathrm{rad}}\right)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots
$$

For very small $x, \cos (x) \approx 1-x^{2} / 2$!

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=\lim _{x \rightarrow 0} \frac{1-\left(1-x^{2} / 2!\right)}{x}=1-x^{2} / 2!\approx \cos x \\
= & \lim _{x \rightarrow 0} \frac{1-1+x^{2} / 2}{x}=\lim _{x \rightarrow 0} \frac{x}{2}=0
\end{aligned}
$$

Enrichment Topic B

(Formal definition of continuity)

Continuity at a point $\mathbf{x}=$ a: A function $f(x)$ is continuous at $x=a$ if:
(1) $f(a)$ exists,
(2) $\lim _{x \rightarrow a} f(x)$ exists, and
(3) $\lim _{\mathrm{x} \rightarrow \mathrm{a}} f(x)=f(a)$

Example 1: Draw an example of a function in which (1) is violated at $x=a$ but is otherwise continuous.

Example 2: Draw an example of a function in which (2) is violated at $x=a$ but is otherwise continuous.

Example 3: Draw an example of a function in which (3) is violated at $x=a$ but is otherwise continuous.

Enrichment Topic C
Verification of the power rule

Power rule:

$$
\begin{aligned}
& f(x)=x^{n} \\
& f^{\prime}(x)=n x^{n-1} \quad ; \text { where } n \text { can be a positive integer, a negative } \\
& \text { integer, or fractional }
\end{aligned}
$$

To derive this rule we use the fundamental definition of the derivative and expand $(x+\Delta x)^{n}$ with a binomial expansion:

$$
\begin{aligned}
& \lim _{\Delta \mathrm{x} \rightarrow 0} \frac{\mathrm{f}(\mathrm{x}+\Delta \mathrm{x})-\mathrm{f}(\mathrm{x})}{\Delta \mathrm{x}} \\
& \lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{n}-x^{n}}{\Delta x} \\
= & \lim _{\Delta x \rightarrow 0} \frac{x^{n}+n x^{n-1}(\Delta x)+\frac{n(n-1)}{2} x^{n-2}(\Delta x)^{2}+\cdots+n x(\Delta x)^{n-1}+(\Delta x)^{n-1}-x^{n}}{\Delta x} \\
= & \lim _{\Delta x \rightarrow 0} \frac{(\Delta x)\left(n x^{n-1}+\frac{n(n-1)}{2} x^{n-2}(\Delta x)^{\prime}+\cdots+n(\Delta x)^{n-2}+(\Delta x)^{n-1}\right)}{\Delta x} \\
= & \lim _{\Delta x \rightarrow 0}\left(n x^{n-1}+(a l l \text { remaining terms have } \Delta x)\right) \\
= & n x^{n-1}
\end{aligned}
$$

Enrichment Topic D
(Derivation of product \& quotient rules)

Product rule:

$$
\begin{aligned}
& \text { If } f(x)=u(x) v(x) \text {, then } \\
& f^{\prime}(x)=u \cdot v^{\prime}+v \cdot u^{\prime}
\end{aligned}
$$

To derive this rule we use the fundamental definition of the derivative and add 0 in the form of $-u(x+\Delta x) v(x)+u(x+\Delta x) v(x)$:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{U(x+\Delta x) V(x+\Delta x)-v(x) V(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x) v(x+\Delta x) \overparen{-u(x+\Delta x) v(x)+u(x+\Delta x) v(x)}-v(x) v(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)[v(x+\Delta x)-v(x)]+v(x)[u(x+\Delta x)-v(x)]}{\Delta x} \\
& \begin{array}{l}
=U(x) \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x)-v(x)}{\Delta x}+v(x) \lim _{\Delta x \rightarrow 0} \frac{U(x+\Delta x)-U(x)}{\Delta x} \\
=U(x) v^{\prime}(x)+V(x) U
\end{array}
\end{aligned}
$$

Quotient rule:

$$
\text { If } f(x)=\frac{u}{v} \text { then } \quad f^{\prime}(x)=\frac{v \cdot \mathbf{u}^{\prime}-\mathbf{u} \cdot \mathbf{v}^{\prime}}{v^{2}}
$$

To derive this rule we use the fundamental definition of the derivative, clear the complex fraction, and then add 0 in the form of $-u(x) \cdot v(x)+u(x) \cdot v(x):$

$$
\begin{aligned}
& F^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\frac{U(x+\Delta x)}{V(x+\Delta x)}-\frac{U(x)}{V(x)}}{\Delta x} \frac{V(x+\Delta x) V(x)}{V(x+\Delta x) V(x)} \\
& =\lim _{\Delta x \rightarrow 0} \frac{U(x+\Delta x) V(x)-U(x) V(x+\Delta x)}{\Delta x V(x+\Delta x) V(x)} \\
& =\lim _{\Delta x \rightarrow 0} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\frac{U(x+\Delta x) V(x)-U(x) V(x)-U(x) V(x+\Delta x)+U(x) V(x)}{\Delta x V(x+\Delta x) V(x)}}{\Delta x} \\
& =\frac{U(x) V(x)-U(x) \frac{V(x+\Delta x)-V(x)}{\Delta x}}{V(x+\Delta x) V(x)} \\
& =\frac{V u_{x \rightarrow 0} \frac{U(x+\Delta x)-U(x)}{\Delta x} V(x)-U(x) \lim _{\Delta x \rightarrow 0} \frac{V(x+\Delta x)-V(x)}{\Delta x}}{\Delta\langle x \rightarrow 0 V(x+\Delta x) V(x)} \\
& =\frac{V(x) U^{\prime}(x)-U(x) V^{\prime}(x)}{[V(x)]^{2}}
\end{aligned}
$$

Enrichment Topic E
(Derivative of sine and cosine)
To derive $\mathrm{f}(\mathrm{x})=\sin (\mathrm{x})$ we use the following four items:

- $f(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
- $\quad \sin (A+B)=\sin (A) \cos (B)+\sin (B) \cos (A)$
- $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$
- $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=0$
(The last two items are from Enrichment topic A.)

$$
\begin{aligned}
f(x) & =\sin (x) \\
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin (x+\Delta x)-\sin (x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin (x) \cos (\Delta x)+\sin (\Delta x) \cos (x)-\sin (x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sin (x)(\cos (\Delta x)-1)}{\Delta x}+\lim _{\Delta x \rightarrow 0} \frac{\cos (x) \sin (x x)}{\Delta x}=1 \\
& =0+\cos (x)=\frac{\cos (x)}{}
\end{aligned}
$$

To derive $\mathrm{f}(\mathrm{x})=\cos (\mathrm{x})$ we use the following four items:

- $f(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$
- $\quad \cos (A+B)=\cos (A) \cos (B)-\sin (A) \sin (B)$
- $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$
- $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta}=0$
(The last two items are from Enrichment topic A.)

$$
\begin{aligned}
& f(x)=\cos (x) \\
& F^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos (x+\Delta x)-\cos (x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos (x) \cos (\Delta x)-\sin (x) \sin (\Delta x)-\cos (x)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\cos (x)(\cos (\Delta x)-1)}{\Delta x}-\lim _{\Delta x \rightarrow 0} \frac{\sin (x) \sin (\Delta x)}{\Delta x} \\
& =0-\sin (x)=-\sin (x)
\end{aligned}
$$

Enrichment Topic F

(Verification of the Chain Rule)

The Chain Rule:

If $y=f(g(x))$ and both $f(x)$ and $g(x)$ are differentiable, then:

$$
y^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

$$
\begin{aligned}
y^{\prime}=\frac{d f}{d x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x} \frac{\Delta g}{\Delta g} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta g} \frac{\Delta g}{\Delta x} \quad \text { as } \Delta x \rightarrow 0, \Delta g \rightarrow 0 \\
& =\left[\lim _{\Delta g \rightarrow 0} \frac{\Delta F}{\Delta g}\right]\left[\lim _{\Delta x \rightarrow 0} \frac{\Delta g}{\Delta x}\right] \\
& =f^{\prime \prime}(g) g^{\prime}(x)
\end{aligned}
$$

The astute observer may have noticed a flaw in the above "proof". A change in x (called Δx) induces a change in g (called $\Delta \mathrm{g}$) which in turn causes a change in y (called Δy). Notice that Δg appears in the denominator and if it is zero, the proof fails.

The proof is not rigorous since we must consider the possibility of g not changing $(\Delta \mathrm{g}=0)$ as x changes. Fortunately the rule prevails under more rigorous scrutiny. However, for most beginning students the above "proof" is sufficient.

Enrichment Topic G

Verification of exponential derivatives

Show that $\frac{d}{d x} a^{u}=a^{u} \ln (a) \frac{d u}{d x}$:

$$
\begin{aligned}
\text { Begin with } y=a^{u} & \quad(u \text { is a function of } x) \\
\ln (y) & =\ln \left(a^{u}\right) \quad \text { Take } \ln \text { of both sides, } \\
\ln y & =u \ln (a) \\
\frac{1}{y} y^{\prime} & =u^{\prime} \ln (a) \text { Take derv. wist. } x \\
y^{\prime} & =y u^{\prime} \ln (a) \\
y^{\prime} & =a^{u} u^{\prime} \ln a \\
\frac{d y}{d x} & =a^{u} \ln (a) \frac{d u}{d x}
\end{aligned}
$$

Enrichment Topic H
Verification of logarithm derivatives

Show that $\frac{d}{d x} \log _{a} x=\frac{1}{x} \log _{a} e$
Begin with $\frac{d}{d x} \log _{a} x=\lim _{\Delta x \rightarrow 0} \frac{\log _{a}(x+\Delta x)-\log _{a}(x)}{\Delta x}$

$$
\begin{aligned}
f^{\prime} & =\lim _{\Delta x \rightarrow 0} \frac{\log _{a}\left(\frac{x+\Delta x}{x}\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\log _{a}\left(1+\frac{\Delta x}{x}\right)}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{x \log _{a}\left(1+\frac{\Delta x}{x}\right)}{x(\Delta x)} \text { multiply by } \frac{x}{x} \\
& =\left(\lim _{\Delta x \rightarrow 0} \frac{1}{x}\right)\left(\lim _{\Delta x \rightarrow 0} \frac{\frac{x}{\Delta x} \log _{a}\left(1+\frac{\Delta x}{x}\right)}{l}\right) \\
& =\frac{1}{x}(\Delta m_{x \rightarrow 0} \log _{a}\left(1+\frac{\Delta x}{x}\right)^{\left.\frac{\alpha}{\Delta x}\right)} \underbrace{l_{x}} \begin{array}{l}
\text { is of b } \\
\text { is } \\
\text { definition }
\end{array} \\
& =\frac{1}{x} \log _{a} e
\end{aligned}
$$

Using the chain rule for taking the derivative of a function of afunction we get:

$$
\frac{d}{d x} \log _{a}(u)=\frac{1}{u} \log _{a}(e) \frac{d u}{d x}
$$

Enrichment Topic I

Verification of inverse trig function derivatives

Show that $\frac{\mathrm{d}}{\mathrm{dx}} \arcsin (\mathrm{x})=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$
Begin with $y=\operatorname{Sin}^{-1}(x) \quad-\pi / 2 \leq y \leq \pi / 2$

$$
y^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
$$

$$
\text { on } y \text {. }
$$

Show that $\frac{d}{d x} \arccos (x)=\frac{-1}{\sqrt{1-x^{2}}}$
Begin with $y=\operatorname{Cos}^{-1}(x) \quad 0 \leq y \leq \pi$

$$
\begin{aligned}
& x=\cos (y) \text { write in "regular' 'trig form } \\
& \begin{array}{ll}
1=-\sin (y) y^{\prime} \text { ' take derv witt, } x \\
y^{\prime}=\frac{-1}{\sin y} \quad & \sin ^{2} y+\cos ^{2} y=1 \\
y^{\prime}=\frac{-1}{\sqrt{1-\cos ^{2} y}} & \text { sing }=t \sqrt{1-\cos ^{2} y} \\
& \text { + because of } \\
y^{\prime}=\frac{-1}{\sqrt{1-x^{2}}} & \text { onachant restriction }
\end{array}
\end{aligned}
$$

Show that $\frac{\mathrm{d}}{\mathrm{dx}} \arctan (\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}$

$$
\begin{aligned}
\text { Begin with } y & =\operatorname{Tan}^{-1}(x) \quad-\pi / 2 \leq y \leq \pi / 2 \\
x & =\tan (y) \\
1 & =\sec ^{2}(y) y^{\prime} \\
y^{\prime} & =\frac{1}{\sec ^{2}(y)} \sec ^{2} y=1+\tan ^{2} y \\
y^{\prime} & =\frac{1}{1+\tan ^{2} y} \\
y^{\prime} & =\frac{1}{1+x^{2}}
\end{aligned}
$$

Enrichment Topic J

An argument in support of

the Fundamental Theorem of Calculus
Consider the following functions from physics: position $s(t)$, velocity $v(t)$, and acceleration $a(t)$

The derivative of $\mathrm{s}(\mathrm{t})$ produces $\mathrm{v}(\mathrm{t})$ and the derivative of $\mathrm{v}(\mathrm{t})$ produces $a(t)$.

Similarly, integrating $a(t)$ produces $v(t)$ and integrating $v(t)$ produces $\mathrm{s}(\mathrm{t})$.

Now consider this specific displacement function $s(t)$ and its derivative over the time interval [$2 \mathrm{sec}, 5 \mathrm{sec}$]:

$$
\begin{aligned}
& s(t)=\left(3 t^{2}+4\right) \text { meters } \\
& s^{\prime}(t)=v(t)=6 t \text { meters } / \mathrm{sec}
\end{aligned}
$$

The net displacement in this interval is simply the difference in displacement at $\mathrm{t}=2 \mathrm{sec}$ and $\mathrm{t}=5 \mathrm{sec}$.

$$
\begin{aligned}
& \operatorname{disp}=s(5)-s(2)=3(5)^{2}+4-\left(3(2)^{2}+4\right)=63 \text { meters } \\
& =3 \cdot 5^{2}+4-\left(3 \cdot 2^{2}+4\right)=79-16=63 \text { meters }
\end{aligned}
$$

Notice that the area under the velocity curve given by $\int_{2}^{5} 6 t \mathrm{dt}$ is

$$
\begin{aligned}
\left\{\begin{array}{rl}
V(t)=6 t
\end{array} \quad A=\int_{2}^{5} 6 t d t\right. & =\frac{30+12}{2}(5-2) \\
& =63
\end{aligned}
$$

Finally, notice these two answers are the same. Therefore, the meaning of this definite integral is the accumulated distance traveled during the time interval:

$$
\int_{2}^{5} v(t) d t=s(5)-s(2)
$$

Generalizing from this we have the Fundamental Theorem of Calculus:
If $f(x)$ is continuous over $[a, b]$, differentiable in (a, b), and $F^{\prime}(x)=f(x)$ then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Example: Evaluate $\int_{-1}^{4} 2 \mathrm{t}^{2} \mathrm{dt}$.

$$
\begin{aligned}
\int_{-1}^{4} 2 t^{2} d t=\left.\frac{2 t^{3}}{3}\right|_{-1} ^{4} & =\frac{2 \cdot 4^{3}}{3}-\frac{2(-1)^{3}}{3} \\
& =\frac{2}{3}(64+1) \\
& =43 \cdot \overline{3}
\end{aligned}
$$

Enrichment Topic K

Why the absolute value

 for the integral of $1 / x$?When integrating $\int \frac{d u}{u}$ it is customary to write the solution as $\ln |u|+C$.
Why the absolute value? Superficially, it seems to be an easy answer, "Because it's illegal to take the logarithm of a negative number."
Probing a little deeper, let's take a closer look at the reverse of this process... taking the derivative of $f(x)=\ln (x)$.

First, assuming that $x>0$, find the derivative of $f(x)=\ln (x)$:

$$
\frac{d}{d x}(\ln (x))=\frac{1}{x} \quad \text { which implies: } \quad \int \frac{1}{x} d x=\ln (x)+C
$$

Now assume that $x<0$ and find the derivative of $f(x)=\ln (-x)$ (Notice we must use $-x$ here so that we are taking the log of a positive number.):

$$
\frac{d}{d x}(\ln (-x))=\frac{1}{-x}(-1)=\frac{1}{x} \text { which implies: } \int \frac{1}{x} d x=\ln (-x)+C
$$

Surprisingly, the two derivatives above are the same. So what are we to do when we must integrate $\int \frac{1}{x} d x$ and x could be any value, positive or negative? Both answer above $(\ln (x)$ when $x>0$ and $\ln (-x)$ when $x<0)$ can equivalently written as $\ln |x|$.

So in general we write:

$$
\int \frac{d u}{u}=\ln |u|+c
$$

Enrichment Topic L

(Partial Fractions)

The technique of "partial fractions" is the process of decomposing a given rational expression into a sum of fractions with denominators of lower degree. For example,

$$
\frac{x-11}{2 x^{2}+5 x-3}=\frac{2}{x+3}-\frac{3}{2 x-1}
$$

The virtue in doing this is that the two fractions on the right are easier to handle than is the larger and more complex one on the left. As a specific example, integrating the fraction on the left is difficult whereas the two fractions on the right are each easy to integrate. . . they both produce natural logs.

There are four different cases to consider depending on the degree of factors of the denominator and their repetition:

Case 1: When the denominator can be resolved into real linear factors, all of which are distinct. . . see Example 1.

Case 2: When the denominator can be resolved into real linear factors, some of which are repeated. . . see Example 2.

Case 3: When the denominator contains at least one quadratic factor but no repeated quadratic factor. . . see Example 3.

Case 4. When the denominator contains at least one repeated quadratic factor. . . see Example 4.

Example 1: (case 1) Resolve $\frac{x^{2}-3 x+6}{(x-1)(3-2 x)(x+1)}$ into partial fractions.

$$
\begin{array}{r}
\frac{x^{2}-3 x+6}{(x-1)(3-2 x)(x+1)}=\frac{A}{x-1}+\frac{B}{3-2 x}+\frac{C}{x+1} \\
=\frac{A(3-2 x)(x+1)+B(x-1)(x+1)+C(x-1)(3-2 x)}{(x-1)(3-2 x)(x+1)}
\end{array}
$$

Expand and collect like powers

$$
\frac{\left(x^{2}-3 x+6\right.}{(x-1)(3-2 x)(x+1)}=\frac{(-2 A+B-2 C) x^{2}+(A+5 C) x+(3 A-B-3 C)}{(x-1)(3-2 x)(x+1)}
$$

$$
\left.\begin{array}{rl}
-2 A+B-2 C & =1 \\
A+5 C & =-3 \\
3 A-B-3 C & =6
\end{array}\right\} \quad \begin{aligned}
& A=2 \\
& B=3 \\
& C=-1
\end{aligned}
$$

Example 2: (case 2) Resolve $\frac{11 x-6-x^{2}}{(x+2)(x-2)^{2}}$ into partial fractions.

$$
\begin{array}{r}
\frac{11 x-6-x^{2}}{(x+2)(x-2)^{2}}=\frac{A}{x+2}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}} \\
=\frac{A(x-2)^{2}+B(x+2)(x-2)+C(x+2)}{(x+2)(x-2)^{2}}
\end{array}
$$

Expand and collect lite powers

$$
\frac{11 x-6-\sqrt{x^{2}}}{(x+2)(x-2)^{2}}=\frac{(A+B) x^{2}+(-4 A+C) x+(4 A-4 B+2 C)}{(x+2)(x-2)^{2}}
$$

$$
\begin{gathered}
\left.\begin{array}{c}
A+B \\
-4 A+1 \\
-4 \\
4 A-4 B+2 C=-6
\end{array}\right\} \quad \begin{array}{c}
A=-2 \\
B=1 \\
C=3 \\
\frac{11 x-6-x^{2}}{(x+2)(x-2)^{2}}=\frac{-2}{x+2}+\frac{1}{x-2}+\frac{3}{(x-2)^{2}}
\end{array}
\end{gathered}
$$

Example 3: (case 3) Resolve $\frac{x^{2}+2 x-2}{(x-2)\left(x^{2}+x+1\right)}$ into partial fractions.

$$
\begin{aligned}
\frac{x^{2}+2 x-2}{(x-2)\left(x^{2}+x+1\right)} & =\frac{A}{x-2}+\frac{B x+C}{x^{2}+x+1} \\
& =\frac{A\left(x^{2}+x+1\right)+(B x+C)(x-2)}{(x-2)\left(x^{2}+x+1\right)}
\end{aligned}
$$

Expand and collect like powers

$$
\frac{1 x^{2}+2 x-2}{(x-2)\left(x^{2}+x+1\right)}=\frac{(A+B) x^{2}+(A-2 B+C) x+(A-2 C)}{(x-2)\left(x^{2}+x+1\right)}
$$

$$
\left.\begin{array}{r}
A+B=1 \\
A-2 B+C=2 \\
A-2 C=-2
\end{array}\right\} \begin{gathered}
A=6 / 7 \\
B=1 / 7 \\
C=10 / 7 \\
\frac{x^{2}+2 x-2}{(x-2)\left(x^{2}+x+1\right)}=\frac{6 / 7}{x-2}+\frac{(1 / 7) x+10 / 7}{x^{2}+x+1}
\end{gathered}
$$

Example 4: (case 4) Resolve $\frac{x^{4}-x^{2}+1}{x\left(x^{2}+x-1\right)^{2}}$ into partial fractions.

$$
\frac{x^{4}-x^{2}+1}{x\left(x^{2}+x-1\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+x-1}+\frac{D x+E}{\left(x^{2}+x-1\right)^{2}}
$$

Finding a common denom.

$$
=\frac{A\left(x^{2}+x-1\right)^{2}+(B x+C) x\left(x^{2}+x-1\right)+(1 x+E) x}{x\left(x^{2}+x-1\right)^{2}}
$$

Expand and collect like powers

$$
=\frac{(A+B) \chi^{4}+(2 A+B+C) \chi^{3}+(-A-B+C+0) \chi^{2}+(-2 A-C+E) x+A}{x\left(x^{2}+x-1\right)}
$$

Set coed. of like powers equal / + get:

$$
\left.\begin{array}{cc}
A+B & =1 \\
2 A+B+C & =0 \\
-A-B+C+D & =-1 \\
-2 A-C+E=0 \\
A & =1
\end{array}\right\} \begin{gathered}
A=1 \\
B=0 \\
C=-2 \\
D=2 \\
E=0 \\
\frac{x^{4}-x^{2}+1}{x\left(x^{2}+x-1\right)^{2}}=\frac{1}{x}+\frac{-2}{x^{2}+x-1}+\frac{2 x}{\left(x^{2}+x-1\right)^{2}}
\end{gathered}
$$

Before resolving a rational expression into partial fractions always make sure the rational expression is a "proper rational expression" (numerator is of less degree than the denominator). If not, divide.

Example 5: Divide so as to produce a "mixed expression" whose fractional part is in proper rational form:

$$
\frac{x^{3}+2 x^{2}-2 x+2}{x^{2}+x-2}
$$

Assignment: Resolve the following rational expressions into partial fractions.

1. $\frac{x-13}{(x-3)(x+3)}$
case $1, \frac{3}{x+2}-\frac{2}{x-3}$
2. $\frac{x^{2}}{(x+1)^{2}(x-1)}$
case 2,
$\frac{1}{4(x-1)}+\frac{3}{4(x+1)}-\frac{1}{2(x+1)^{2}}$
3. $\frac{x^{2}-x+13}{(x+1)\left(x^{2}+4\right)}$
case $3, \frac{3}{x+1}+\frac{1-2 x}{x^{2}+4}$
4. $\frac{x+2}{2 x^{2}-x}$
case $1, \frac{5}{2 x-1}-\frac{2}{x}$
5. $\frac{15-12 x}{(x-2)^{2}(2 x-1)^{2}}$
case $2, \frac{4}{(2 x-1)^{2}}-\frac{1}{(x-2)^{2}}$
6. $\frac{x^{2}+x-1}{2(x-1)\left(x^{2}-x+1\right)}$
case $3, \frac{1}{2(x-1)}+\frac{1}{x^{2}-x+1}$
7. $\frac{x^{3}-3 x^{2}-x+8}{(x-2)^{2}}$
divide first, then case 2

$$
x+1+\frac{2}{(x-2)^{2}}-\frac{1}{x-2}
$$

