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Sign Rules  
   
 

Rules for addition: 
 If signs are alike: Add the two numbers and take the sign they   
          have. 
     Examples: 
     3 + (+4) = +7 
     5 + 8 = 13 
     -9 –2 = -11 
     (-5) – 4 = -9 
     -4 + (-6) = -10 
 

 If signs are different: Subtract and give the answer the sign of the 
          larger number. 
     Examples: 
     3 + (-7) = -4 
     9 – 11 = -2 
     14 – 8 = 6 
     22 + (-1) = 21 
 

Rules for multiplication: 
 If signs are alike: Multiply and give the answer a positive sign. 
     Examples: 
     3(4) = 12 
     -3(-12) = 36 
     (-5)(-3) = 15 
 

 If signs are different: Multiply and give the answer a negative 
          sign. 
     Examples: 
     (-3)4 = -12 
     5(-2) = -10 
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Rules for division: (essentially the same as for multiplication) 
 If signs are alike: Divide and give the answer a positive sign. 
     Examples: 
     12 / (4) = 3 
     6 / 2 = 3 
     -12 / (-3) = 4 
     (-15) / (-3) = 5 
 
 If signs are different: Divide and give the answer a negative sign. 
     Examples: 
     (-30) / 5 = -6 
     16 / (-2) = -8 
     -8 / 2 = -4 
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Assignment: Perform the indicated operations, taking special care with the signs. 

1. 5 (-3) =              2.  8(5) =                3.  –9 / (-3)=      4.  –2(-6) =  
 
   

5.  22(-1) =              6.  –12(-2) =     7.  3 + (-8) =       8.  (–50) / 10 =  
 
 
9.  2 + (+19) =  10.  16(2) =       11. 23 + (-2)=         12.  –8 / 4 =  
 
 
13.  15 – 6 =              14.  16 / (-2) =     15.  36 / 4 =       16.  (-3)(-8) = 
 
 
17.  5(-4) =              18.  –3(-22)=     19.  9 – 12 =       20.  5 + (8) = 
  
  
21.  –6 + (-7) =   22.  8 + (-11) =     23.  (-2) – 4 =        22.  –19(-2) =  
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(Derivation of the Quadratic Formula)  
 
 

Begin with the general form of the quadratic equation, ax2 + bx + c = 0 
and show that the two solutions are given by the quadratic formula: 

 

𝒙 =
−𝒃 ± √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝒂
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Conic Section Applications and Equation Derivations  
   

Applications of the four conic sections are beautifully illustrated at:  
            http://britton.disted.camosun.bc.ca/jbconics.htm 

Applications of the circle: 
 

No applications are given for this obvious category 
since they abound in everyday life. 

 

Applications of the parabola: 
 

• Some comets pass around the sun in a parabolic path. 
• Projectiles follow a parabolic path (a tossed ball). 
• The mirrors in flashlights and reflecting telescopes 

are parabolic in shape.  
• The cables of a suspension bridge hang in the shape 

of a parabola 
 

Applications of the ellipse: 
 

• Planets (and some comets) orbit about the sun in an 
elliptical path with the sun at one of the foci. 

• Light passing through one focal point will reflect off 
the ellipse and pass through the other focal point. 
The same thing happens with sound as evidenced in 
“whispering galleries.” 

• A right circular cylinder sliced at an angle produces an ellipse 
• Elliptical gears provide variable rotational speed about an axis 

passing through a focal point. 

http://britton.disted.camosun.bc.ca/jbconics.htm
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Applications of the hyperbola: 
 

• Some comets pass around the sun in a hyperbolic 
path. 

• Charged particles fired at heavy nuclei of atoms are 
deflected into a hyperbolic path. 

• Hyperbolic tracking (a navigational technique called 
Loran) uses intersecting hyperbolas to locate the positions of 
airplanes and ships. 

• The shock wave of a sonic boom intersects the ground in the 
shape of a hyperbola. 

• Hyperbolic as well as parabolic mirrors and lenses are used in 
telescope systems. 

 

See www.youtube.com/watch?v=XDLyiEWcj_Y for a humorous video 
about the applications of conic sections. 

 

Equation of a circle (centered at the origin): 
A circle is defined as the locus of points that 
are a fixed distance (called the radius r) from 
a fixed point called the center of the circle: 
  

The equation is easily obtained by applying 
the distance formula between two points: 
 

 d = �(x2 − x1)2 + (y2 − y1)2 
 
Let point #1 be the center at (0, 0) and point #2 be (x, y) (some 
arbitrary point on the circle) to get: 
 

d = �(x − 0)2 + (y − 0)2 
 

Square both sides, simplify, and let d = r (the radius of the circle) 
to get: 

                                                    x2 + y2 = r2 

 

http://www.youtube.com/watch?v=XDLyiEWcj_Y
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Equation of a parabola (with vertex at the origin): 
 

A parabola is defined as the locus 
of points (x, y) that are equidistant 
from a fixed point called the focus 
and a fixed line called the directrix: 
 

d1 = d2  
 

Apply the distance formula to d1 and d2 so that 
 

d1 = �(x − 0)2 + (y − p)2    and   d2 = y – (-p) 
 

Substituting these into d1 = d2 and simplifying yields: 
 

y = 
𝟏
𝟒𝐩

 x2 
 

 

Equation of an ellipse (centered at the origin): 
 

An ellipse is defined as the locus of 
points such that the sum of the distances 
from some arbitrary point (x, y) on the 
ellipse to two fixed points (focal points at 
(-c, 0) and (c, 0) ) is a constant: 

 

d1 + d2 = 2a,  where a is a constant > 0. 
 

Apply the distance formula to d1 and d2 so that 
 

d1 = �(x − (−c))2 + (y − 0)2    and   d2 = �(x − c)2 + (y − 0)2 
 

Substituting these into the top equation, simplifying, and making 
the substitution b2 = a2 – c2 yields: 

 

𝐱𝟐

𝐚𝟐
+
𝐲𝟐

𝐛𝟐
= 𝟏 
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Equation of a hyperbola (centered at the origin): 
 

A hyperbola is defined as the locus of points 
such that the difference of the distances 
from some arbitrary point (x, y) on the 
hyperbola to two fixed points (focal points at 
(-c, 0) and (c, 0)) is a constant: 
 

d1 –  d2  = 2a,  where a is a constant > 0. 
 

Apply the distance formula to d1 and d2 so that 
 

d1 = �(x − (−c))2 + (y − 0)2    and   d2 = �(x − c)2 + (y − 0)2 
 

Substituting these into the top equation, simplifying, and making 
the substitution b2 = c2 – a2 yields: 

 

𝐱𝟐

𝐚𝟐
−
𝐲𝟐

𝐛𝟐
= 𝟏 

 

 

The equations for the four conic sections above assume centering at 
the origin. If a conic section is to be translated so as to be centered at 
(h, k), substitute (x – h) for x and (y – k) for y in each equation to get: 
  

Circle:           (x – h)2 + (y – k)2 = r2 
 

Parabola:      y – k = 
1
4p

 (x – h)2 

Ellipse:         
(x−h)2

a2
+ (y−k)2

b2
= 1 

 

Hyperbola:   
(x−h)2

a2
− (y−k)2

b2
= 1 
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The translated equations of conic section just presented represent just 
one of several possible transformations. These particular 
transformations preserve relative distances and angles. Some other 
transformations do not. For example, some transformations distort the 
original shape by horizontally or vertically stretching it. 
 

 

It should be noted that the translated conic section equations 
developed here are in an ideal form that help in identifying the various 
properties that facilitate creating a graph.  For example, consider this 
equation of a circle: 
 

(x – 3)2 + (y + 5)2 = 16 
 

At a glance, it is easily seen that the center is at (3, -5) and the radius is 
4. What about a circle whose equation is given by an equation like this? 

 3x2 + 3y2 – 6x + 24y + 24 = 0 
 

How would we identify the center and radius? The following example 
demonstrates the technique of “completing the square” to accomplish 
this. The technique can also be applied to the other conic sections. 
 

Example: Find the center and radius of the circle represented by this equation 
and then graph the circle:  3x2 + 3y2 – 6x + 24y + 24 = 0 
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Euclidean/non-Euclidean geometry  
   
In this course, we have studied the geometry of flat surfaces as well as 
simple three-dimensional space.  This kind of geometry is called 
traditional, or Euclidean, geometry.  This geometry assumes that the 
following is true. 
 

Parallel Postulate: Given a line and a point not on the line, there 
exists one and only one line that goes through the point and is 
parallel to the original line. 
 

However, there are different kinds of geometry in which the Parallel 
Postulate is false. These geometries involve working on curved 
surfaces.  We call these geometries non-Euclidean geometries.  Some of 
these geometries modify the Parallel Postulate.  Some examples of non-
Euclidean geometries are illustrated below. 

 

Spherical Geometry 
Spherical geometry is the geometry on the surface of a sphere.  Its 
modified Parallel Postulate is below. 
 

Parallel Postulate (Spherical Geometry): Given a “line” (actually 
circles) and a point not on the line, no lines exist that go through 
the point and are parallel to the original line. 

 
An interesting fact about spherical geometry is that the angles of a 
triangle always add up to be greater than 180 degrees.  In addition, the 
shortest distance between two points in spherical geometry is not 
necessarily unique. 
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Hyperbolic Geometry 
Hyperbolic geometry is the geometry on the surface of a hyperbolic 
paraboloid (a saddle-shaped “plane.”)  Its modified Parallel Postulate is 
below. 
 

Parallel Postulate (Hyperbolic Geometry): Given a line and a point 
not on the line, there exist at least two lines that go through the 
point and are parallel to the original line. 

 

An interesting fact about hyperbolic geometry is that the angles of a 
triangle always add up to be less than 180 degrees. 
 

 

Taxicab Geometry 
Taxicab geometry is a modified version of Euclidean geometry in which 
distances between objects in space are calculated differently. Recall 
that in Euclidean geometry, the distance between two points is 
measured using the distance formula: 

 
 d = �(x2 − x1)2 + (y2 − y1)2 

 

In Taxicab geometry, the distance between two points is the sum of the 
absolute values of the differences of their coordinates. 
 

d = |x2 − x1| + |y2 − y1| 
 

This has many interesting effects; for example, a circle drawn in Taxicab 
geometry looks like a square. 
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Constructions  
   

 

Copying a line segment… see lesson 3-04 
 

Copying an angle… see lesson 3-04 
 

Perpendicular bisector of a line segment… see lesson 3-04 
 

Bisecting an angle… see lesson 3-04 
 

Circumscribing a circle about a triangle… see lesson 15-04 
 

Inscribing a circle inside a triangle and regular polygons… see lesson 
16-06 
 

 

The constructions mentioned above and those that follow in 
this document are all done with just two drawing tools, a 
compass and a straight edge (and a sharp pencil, of course). 

 

 

Please note that the following constructions are all fully demonstrated 
in an associated video. 
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Constructing an equilateral triangle: 
 

Begin with line segment AB and set the width of the compass to AB. 
 

 
With the point of the compass at point A, 
strike an arc above the line segment. 
 
 
 
 
 

 
 
Repeat with the point of the compass at 
point B. Call the intersection of the two 
arcs point C. 
 
 
 
 
 
 
Complete the triangle by drawing line 
segments AC and BC. 
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Constructing a square: 
 

Begin with line AB�⃖���⃗ . (From it, we will construct a square having sides of 
length AB. At point A, construct a perpendicular as was done in Lesson 3-4. 
 

 
 
 
 

 
 
Set the span on the compass to AB and then with the point at A, strike an 
arc on the perpendicular. Call the point of intersection of the arc and the 
perpendicular point D. 
 

 
 
 
 

 
 
With the same setting on the compass and with the point at D, strike an arc 
to the right of D. The place the compass at point B and strike an arc directly 
above, intersecting the previous one. Call their point of intersection C. 
 
 

 
 
 

 
 
Draw line segments DC and CB, to complete the square. 
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Inscribing a hexagon inside a circle. 
 

This construction is based on the premise that 
the central angles of a hexagon are 60o and 
that the angles of an equilateral triangle are 
also 60o. 
 

Beginning with a circle of radius AC, 
construct an equilateral triangle with its 
base on AC. Set the compass span to AC 
and with the point at A, strike an arc on 
the circle at B. Triangle ABC is equilateral; 
therefore, m∠ACB = 60o. 
 

AB is one side of the hexagon. With the 
point of the compass at A and still with 
a span of AC, strike an arc on the circle 
at D to establish the next vertex of the 
hexagon. 
 
 
 
Continue in this way, placing the point 
of the compass at each new vertex and 
striking an arc on the circle to mark the 
position of the next vertex. 
 
 
 
 
 
 
Connect the marked vertices with line 
segments to complete the hexagon. 
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Exterior Angle Sum Theorem  
 

 

Prior Knowledge:  
Triangle Sum Theorem: The interior angles of a triangle sum to 
180°. 
Supplementary Angle Theorem: The interior angle of a polygon at 
any vertex is supplementary to its exterior angle. 

 

Concept:  
Exterior Angle Sum Theorem: The sum of the exterior angles of a 
convex polygon with N angles is equal to 360°. 

 

Method: 
Look at the following figure showing the exterior angles of a 
convex, regular polygon. It can be seen that the exterior angles 
must sum to 360°. This is shown without proof by using a series of 
dilations (Fig. 1), and then with an example (Fig. 2). 

 

                              Fig. 1                                                                    Fig. 2 
 
Consider the following table of exterior angles of the first few regular, 
convex polygons: 

Name No. of Angles (N) Exterior Angle (E) 
(360°/N) 

Exterior Angle Sum 
N*(E) 

Triangle 3 120° 360° 
Square 4 90° 360° 

Pentagon 5 72° 360° 
Hexagon 6 60° 360° 
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Corollary: 
Working backward from the table, one is able to derive a rule for 
finding the measure of one exterior angle of a convex polygon 
with N angles: E = 360°/N. 
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Interior Angle Sum Theorem  
 

 

Prior Knowledge:  
Exterior Angle Sum Theorem: The sum of the exterior angles of a 
polygon with N angles is always equal to 360°. 
 

Supplementary Angle Theorem: The interior angle of a polygon at 
any vertex is supplementary to its exterior angle. 

 

Corollary to the Exterior Angle Sum Theorem:  
Interior Angle Sum Theorem: The sum of the interior angles of a 
polygon with N angles is (N-2)180°. 

 

Method: 
Look at the following figure (Fig. 1) showing the interior angles of 
a convex, regular polygon. It will be seen that the interior angles 
must be the sum of the number of triangles that can be drawn 
from one vertex within the polygon, and that this number is 
always two less than the number of angles. This is shown without 
proof (Fig. 2). 
 

Shown below is a table the measures of the interior and exterior 
angles of some regular convex polygons. The exterior angle sums 
have been omitted, as they are always 360°. 

 

Name No. of Angles 
(N) 

Exterior Angle (E) 
(360/N) 

Interior Angle (I) 
(180-E) 

Interior Angle Sum (S) 
N*(I) 

Triangle 3 120 60 180 
Square 4 90 90 360 

Pentagon 5 72 108 540 
Hexagon 6 60 120 720 

 

Look at the Interior Angle Sum column: It is just like adding an extra 
triangle to the previous polygon each time. This concept is illustrated in 
the drawing below. Note how 180° is added to the interior angle sum 
each time. 
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 Fig. 1 

Notice that adding a triangle is adding one additional vertex. This gives 
us the following relation: 

No. Angles 3 4 5 6 7 8 
No. Triangles 1 2 3 4 5 6 

 

 
 
 

 Fig. 2 

 

Working backward from the tables, one is able to derive a rule for 
finding the measure of the sum of the interior angles of a convex 
polygon with N angles: S = (N-2)180°.  Also, it is possible to find a 
relation between the number of angles (N) and the measure of one 
interior angle of a convex, regular polygon: I = 180° - 360°/N 
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(Derivation of the Sine Law)  
   
Consider the following two triangles in which a perpendicular has been 
dropped from vertex B to side AC.  The reason we consider two 
triangles is so that we cover both cases: when the perpendicular falls 
inside the triangle and when it falls outside. 

 

From either figure above, solve for h from triangle BCD in terms of a 
and C: 
 
 
 
Using either triangle ABD from the left figure or triangle ABD from the 
right figure, solve for h in terms of c and A (Notice in the right picture, 
angle DAB and angle CAB have the same sine.): 
 
 
Set the two equations for h equal to each other: 
 
 
 
 

Similarly, it can be proved that     
sin𝐴
𝑎

= sin𝐵
𝑏

    and    sin𝐶
𝑐

= sin𝐵
𝑏
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(Derivation of the Cosine Law)  
   
 

Consider triangle ABC in which a perpendicular is dropped from B to the 
line described by opposite side. The left drawing below is when this 
perpendicular falls inside the triangle and the right picture shows it 
falling outside the triangle. Both scenarios will be considered in this 
derivation. 

 

Applying the Pythagorean theorem to either right triangle, we get: 
 
(1) 
 
 
Solve for h from either right triangle and get: 
 
(2) 
 
 
Solve for DA in terms of a, b, and C 
 
(3) 
 
 
 
Now substitute equations (2) and (3) into equation (1) and get: 
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Derivation of a Triangle Area Formula  
   
 

The area of a triangle is given by the multiplying one-half, the product 
of two sides, and the sine of their included angle. 
 

To derive this formula, begin with an acute 
triangle ABC and with b as the base. Draw 
a perpendicular from vertex B to the base 
b and label this line segment as h, the height 
of the triangle. Label the point of intersection 
of the perpendicular with the base as point D. 

Consider right triangle ABD. Find h in terms 
of AB and ∠A. 
 
 
Now find the area of the triangle using the formula (1/2)(base) 
(height). 
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Assignment:  

Duplicate the derivation just done, this time using an obtuse triangle.   
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Analytic Geometry and the use of Equations in Geometry 
   
 

Analytic geometry (also known as coordinate geometry) makes 
extensive use of coordinates and equations.  Three examples are given 
here that distinguish analytic geometry from “regular” geometry: 
 

• To prove that two lines are parallel, find the slopes of the lines 
using m = 

y2−y1
x2−x1

 and show they are equal. 
 

• To prove that two lines are perpendicular, find the slopes of the 
lines and show that their product is -1. 

 

• To show that two line segments are congruent, find the lengths of 
each using the distance formula d = �(x2 − x1)2 + (y2 − y1)2 and 
show they are equal. 

 

Two theorem proofs are offered here illustrating the use of analytic geometry: 
 

Theorem: The diagonals of a rhombus are perpendicular to each other. 
 

First, draw a rhombus on a coordinate 
system in which the coordinates are as 
general as possible. Begin with an initial 
side being the line segment between  
(0, 0) and (a, 0). Thus, we are committed 
to a rhombus with sides of length a. 
 
 
 
Now draw a second side of the rhombus (of 
length a) in which the side is “leaned” out 
by a general amount b. 
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Next, find the y value of this point by an 
application of the Pythagorean theorem. 
 

 
 
 
 

The final point of the rhombus is now found by moving a distance a to the 
right of the last point found. Label the four vertices of the rhombus as P, Q, 
R and S. 

Find the slope of PR (call it mPR): 
 
 
 
 
 

Find the slope of QS (call it mQS): 

 

The proof is completed by showing that mPR (mQS) = -1. 
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Theorem: The medians of a triangle all meet in a common point and that point 
divides each median into two line segments having the ratio 1:2. 
 

Recall that a median of a triangle is the line segment drawn from a vertex 
to the midpoint of the opposite side. 
 

The common point of intersection of all three medians is called the 
centroid of the triangle.   

 
 

Begin by drawing a general (non-
special) triangle as shown here (label it 
PQR).Assign general coordinates to the 
vertices. Also mark and label the 
midpoints as shown: 

Determine the coordinates of the midpoints E, F and G using the 
generalized coordinates of the line segments upon which they lie. Then 
label them on the drawing. 

 

 

The remainder of the proof is left to the student in the assignment that follows. 
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Assignment: Continue the proof started on the preceding page by performing 
these steps: 

1.  Using the coordinates of points R and F, find the equation of the line passing 
through R and F.  

2. Using the coordinates of points P and G, find the equation of the line passing 
through P and G.   

3. Using the coordinates of points Q and E, find the equation of the line passing 
through Q and E. 
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4. Solve the equations for RF�����⃗  and PG�����⃗  to find their intersection point. 
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5. Solve the equations for EQ�����⃗  and PG�����⃗  to find their intersection point. 

 

Similarly, solving the remaining pair of equations (RF�����⃗  and QE�����⃗ )  would 
also result in finding ((a+b)/3, c/3) as their intersection point. 
 

Now we turn out attention to proving the 2:1 ratio part of the theorem.   
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6. Find PC and CG and show that PC/PG = 2:1. 

 

Similarly, it can be shown that RC/CF = 2:1 and that QC/CE = 2:1. 
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Area & volume density (and associated unit conversions) 
 
 

In this topic we will look at two types of density: 
 

• Area density – the count of some quantity per unit area. 
 

• Volume density – the count of some quantity per unit volume. 
 

 

Before looking at examples of density, first consider the word “per” 
(notice it’s used in both densities mentioned above). 
 

As a general rule, when the word “per” is used in a mathematical 
context, the quantity that follows “per” will be placed in the 
denominator of an expression. 

 For example, “miles per hour” is written as 
miles
hour

 . 

“Dollars per dozen” is written as 
dollars
dozen

 . 

 

Example 1: If 87 germs are counted in .2 square centimeters on a slide under a 
microscope, what is the density of germs per square centimeter? Is this an area or 
volume density problem? 
 
        Area density 

Example 2:  Convert the answer of example 1 into germs/m2. 
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Example 3:  At the end of a driving range, 435 golf balls are found in a 5m X 11m 
area. What is the density of golf balls per square meter? 

Example 4:  With the ball density obtained in example 3, how many golf balls 
could be expected in an area of 100 X 50 m? 

Example 5: The weight density of a substance is the weight per unit volume. If a 
cube (1 ft on each side) of gold weighs approximately 1200 lb, what is the density 
in ounces/in3?  
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Example 6:  People with allergies are generally interested in the daily pollen 
count. Pollen counts are typically given as grains/m3 with 30 grains/m3 being 
considered low and above 120 grains/m3 considered high. If a volume of 96 liters 
of air was found to contain 14 grains of pollen, would this be considered to be a 
low, medium, or high pollen count? (1 liter = 1000 cm3) 

 

  



In-Depth Topic L_absent-student, page 4 
 

www.bluepelicanmath.com 

Assignment:  

1.  In an infestation of locusts, a biologist counted 4 locusts/ ft2 on the ground. His 
report requires that he give the density in terms of locusts per square yard. Do 
the conversion that he needs for his report. 

2.  In the manufacture of silicon wafers for the computer-chip industry, a 
technician counted 3 defects per square mm. What is the corresponding number 
of defects per square centimeter? At this rate, how many defects will be found on 
a circular wafer 8 cm in diameter? 

3.  Several years ago, an average of 123 people were found to be living in a square 
area 100m X 100m in Calcutta, India. What was the corresponding population 
density in people/km2? 
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4. Four mosquitos were found in a cubic foot of air. What was the density of 
mosquitos per cubic yard? 

5. What is the mass density of a substance if 3 cm3 of the substance has a mass of 
8 grams? 

6.  The mass density of aluminum is 2.7gm/ml. If the mass of a particular piece of 
aluminum is 75 gm, what is its volume? 
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Deductive and Inductive Reasoning  
   
 

Deductive reasoning is reasoning based on facts. 
 

• Facts in mathematics are written in the form of definitions, 
postulates and theorems.  Deductive reasoning in mathematics 
uses these facts to come up with more mathematical facts. 

 

• Deductive reasoning takes general knowledge and uses it to 
discover a specific property.  When creating a proof in 
geometry, deductive reasoning is used. 

 

• Deductive reasoning (if correctly done) always leads to a 
correct conclusion provided the facts used were true. 

 

Example 1:  Use deductive reasoning to answer the following question. 
 

1.  Mr. Brooks drives to work when it is raining; otherwise, he rides his bike. 
2.  It is raining today. 
 

Based on the true statements above, how did Mr. Brooks get to work? 
 

He drove. 
 

Inductive Reasoning is reasoning based on past events.  We use 
inductive reasoning to formulate mathematical patterns. 
 

• Inductive reasoning takes specific events and uses them to 
create a general pattern.  When trying to formulate a 
hypothesis, inductive reasoning is used. 

 

• Since inductive reasoning is based on past events only, it will 
not always lead to a correct conclusion. 
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Example 2:  Use inductive reasoning to answer the following question. 
 

Give a mathematical rule for the following sequence: {1, 4, 9, 16, 25, 36…} 
 

S
n
 = n2 
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Area of a Regular Polygon by Apothem and Perimeter 
   
 

The area of a regular, convex polygon is equal to one-half the product 
of its apothem and perimeter. 
 

𝐀 =
𝟏
𝟐

(𝐚𝐩𝐨𝐭𝐡𝐞𝐦)(𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫),𝐎𝐑,𝐀 =
𝟏
𝟐𝐚𝐏 

 

This is an equivalent way of saying that the total area of a regular, 
convex polygon is equal to the area of one triangular section times the 
number of sections N: 
 

𝐀𝐭𝐨𝐭𝐚𝐥 = 𝐀𝐭𝐫𝐢𝐚𝐧𝐠𝐥𝐞𝐍.  
 

Shown here is one of N triangular section in a 
polygon of N sides. The area of this triangle is 
 

 1
2

h(base) = 1
2

a(s) 
 

Where a (the apothem) = h and s = side length 
of the polygon. 
 
To get the total area of the polygon, multiply 
by N to get: 
 

𝐴𝑡𝑜𝑡𝑎𝑙 =
1
2

a(s)N 
 

Since (s)N is the perimeter we can finally write 
 

𝐀 =
𝟏
𝟐

(𝐚𝐩𝐨𝐭𝐡𝐞𝐦)(𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫),𝐨𝐫,𝐀 =
𝟏
𝟐𝐚𝐏 
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Tessellations  
   

The word tessellate comes to English from the Latin word tessella, the 
name for the small square tiles used in mosaics. A tessellation is a tiling 
of a plane with individual polygons, or with groups of polygons called 
prototiles. 
 

• Three regular polygons can tile the Euclidean plane without 
leaving any gaps or overlapping. These are triangles, squares, and 
hexagons, which make up the regular tessellations. 

 

 

• Notice how at every vertex the angle sum is 360°. 
 

• One way to name tessellations is by identifying the vertex figure 
{s,n}, the polygons that meet at a vertex, where s is the number 
of sides in the polygon and n is the number of polygons. 

 

Example 1: Identify these regular tessellations by their vertex figure, and state the 
geometry of the plane being tiled, either the Euclidean, Hyperbolic, or Spherical 
plane. 
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Example 2: Name the isometry that maps vertex A to A’.  

               Tx,y (0.2,0.4)                               R(0,0) 90                                             rBC 
 

• Semi-regular tiling uses the convention {s1,s2,s3,…,sn} to describe 
the vertex configuration, where s is the number of sides in each 
polygon and n are the polygons that meet at the vertex, starting 
with the lowest number and continuing either CW or CCW. 

 

• Semi-regular tessellations are also vertex-transitive.  
 

Example 3: Identify these semi-regular tessellations by their vertex configuration: 
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`

  
Fractals  

   

Fractals have been described as “useful beauty” as attested by these 
photos of computer generated pictures of fractals: 

   

  

Background 
 

Fractals is a relatively new branch of mathematics that had its simple 
beginnings in the 17th century and was primarily and originally based on 
simple recursion. The subject moved with increasing rigor into the 19th 
century; however, the word “fractal” was not coined until  1975 by 
Benoit Mandelbrot, the most famous name associated with fractals. It 
was not until the present century that interest in fractals really grew 
into the major field it is today. 
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What is a fractal? 
 

There is no universal agreement on exactly how to define fractals; 
however, the general consesus is that they are infinitely self-similar 
and iterated. This means that no matter how deeply we zoom on a 
fractal image, it always looks the same and the same construct is 
continually repeated. 
 

While classical Euclidean geometry assigns a dimension of one to a line, 
two dimensions to an object in a plane, and three dimensions to 
objects having length, width, and depth, fractals can have fractional 
dimensions such as .6309, 1.2619, etc. The formula that determines the 
dimension of a fractal is given by the following where P is the number 
of “pieces” and M is the “magnification”: 
 

ln (P)/ln (M) 

Initiators and Generators 
 

Very simply, the initiator is a starting shape and the generator is the set 
of rules (an algorithm) that governs the production of the next iteration 
of the fractal. 
 

The Cantor Set: 
 

The initiator is a line segment and the generator is the 
algorithm: “With each iteration, the middle third of the each 
line segment of the previous set is removed.”  Three 
iterations are shown below: 

 
 

 

 
 

To calculate the dimension of the Cantor set,  notice the 
magnification M is 3 (the minimum magnification required 
to see that the fractal is self-similar) and P is 2 (each 
segment decomposes into 2 smaller segments).  The 
dimension of this fractal is ln(P)/ln(M) = ln(2)/ln(3) = .06309. 
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The Koch Curve: 
 

The initiator is a line segment of unit length divided into 
three equal line segments. The generator is the algorithm, 
“With each iteration, the middle section is replaced with an 
equilateral triangle that has its base removed.” 
 
 
 
 
 
 
 

 
 

To calculate the dimension of the Koch Curve, notice the 
magnification M is 3 (the minimum magnification required 
to see that the fractal is self-similar) and P is 4 (each 
segment decomposes into 4 smaller segments).  The 
dimension of this fractal is ln(P)/ln(M) = ln(4)/ln(3) = 1.2619. 
 

As the iterations continue forever, it can be shown that the 
length of the Koch curve is infinitely long. 

The Koch Snowflake: 
 

The Koch Snowflake is generated in very much the same way 
as is the Koch Curve. Instead of the initiator being a line 
segment divided into three equal segments, it is an 
equilateral triangle with each side divided into three equal 
parts.  The generator rule for the Koch curve is then applied 
to each side. 
It is interesting to note that the Koch Snowflake has a finite 
area while its perimeter is infinite. As with all fractals, it is 
self-similar. No matter how much we zoom on the curve, it 
always looks the same.  
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There are many other fractals, the most famous of all being the 
Mandelbrot fractals named after its famous discoverer. 
  

To create the Mandelbrot set, pick an arbitrary point C on the complex 
plane and as a generator use an algorithm that uses the recursive 
formula: 
 

Zn = Zn−12 + C 
 
where Z0 = 0. The algorithm will typically generate points that lie either 
inside or outside the Mandelbrot set. For computer generated art, the 
point inside the set can be assigned one color while those outside the 
set can be assigned colors that depend on how many iterations have 
been required to determine that they are outside the set. 

Applications/ Uses of fractals: 
 

• Architecture 
• Astrophysics 
• Biological sciences 
• Computer graphics 
• Signal and image compression 
• Computer networks 
• Medicine 
• Neuroscience 
• Geography 
• Diagnostic imaging 
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• Natural phenomena 
o Clouds 
o River networks 
o Fault lines 
o Mountain ranges 
o Craters 
o Lightning bolts 
o Coastlines 
o Animal coloration patterns 
o Heart rates 
o Earthquakes 
o Snow flakes 
o Crystals 
o Blood vessels 
o Ocean waves 
o DNA 
o Psychlogical subjective perception 
o Soil pores 
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Assignment: 

1. Begin with a large equilateral triangle and do two more iterations of the 
generator rule for a Koch Snowflake. Calculate the dimension of the Koch 
Snowflake. 
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2. Begin with an initiator as a vertical line segment. Show two iterations of this 
“tree” using the generator rule: “Append to the end of the previous segment, two 
other “branching segments” 2/3 the length of the previous segment and at angles 
of 30o from the direction of the original segment.” 
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